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An Experiment in Using the HEPscore Benchmark to Examine
and Improve Data Center Operational Energy and Carbon
Performance
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In this short paper we describe ongoing work to quantitatively evaluate opportunities for revenue neutral
improvements to research computing data centers operational energy and carbon performance. We outline
how we are using the HEP score high-energy physics benchmark suite as a tool for quantitatively mapping the
landscape of heterogeneous fleets of servers of different ages. We illustrate the use of HEP score in a real-world
data center experiment which we are currently undertaking. The experiment is still ongoing, but we expect it
to show that for the sorts of older machines that we suspect can still be found in many research environments
the cumulative energy and carbon costs over periods as shorts as 24 months can be greater than the combined
capital and energy costs of new replacement machines that provide the same computational capacity. We
speculate that for many research organizations with limited budgets, the practice of over extending the life
of hardware could well be financially and environmentally counter productive. We suspect this scenario is
particularly prevalent in research and academic organizations. In these organizations operational energy
and emissions costs are often hidden for individual researchers. We argue that, if our ongoing experiment
hypothesis is validated, then organizations like universities that typically externalize energy and emissions
costs for physical hardware based research computing may want to impose proactive life-cycle management
practices on computer equipment. These practices could be based on the approach we describe in this article.
The practices would, we hypothesize, result in exclusively positive outcomes. Operational costs associated
with energy purchases and environmental emissions would potentially be reduced. Research productibity
would be increased.

CCS Concepts: • Computer systems organization→ Embedded systems; Redundancy; Robotics; • Net-
works → Network reliability.

Additional Key Words and Phrases: datasets, neural networks, gaze detection, text tagging

1 INTRODUCTION
The data center industry is booming alongside rapid AI growth. McKinsey & Company projected
10% annual industry growth through 2030, with $49 billion global spending on new facilities, and a
20% annual increase in the hyperscale market [Bangalore and Srivathsan 2023]. Data centers are
vital to today’s economy, powering search engines, e-commerce, and AI. Global expansion is driven
by the U.S. (40% of the market) and significant growth in Latin America, Europe, and Asia-Pacific.
Sustainability of data centers became a focus due to rising energy and water usage, with impending
U.S. climate regulations pushing companies to disclose carbon emissions. Providers are innovating
for higher density and sustainability [Schaap 2024].
Compute needs are continually growing in research organizations, just as in commercial and

consumer computing. In many research organizations, however, funding streams for computational
infrastructure are often not growing as fast as potential needs, which in many cases may be
fundamentally insatiable. This can lead research groups to retain computer hardware for long
periods of time even as new hardware is acquired. This seems particularly common in the recent
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Massachusetts Institute of Technology, , USA, nbashir@mit.edu; Chris Hill, Massachusetts Institute of Technology, , USA,
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, Vol. 1, No. 1, Article . Publication date: June 2024.



50

51

52

53

54

55

56

57

58

59

60

61

62

63

64

65

66

67

68

69

70

71

72

73

74

75

76

77

78

79

80

81

82

83

84

85

86

87

88

89

90

91

92

93

94

95

96

97

98
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multi-core era where computing performance increases do not come predominantly from increases
in CPU clock speed.
If a key per-core metric like clock speed remains relatively steady, keeping a working system

running for as long as possible may appear prudent. However, computers do not readily display
energy usage per unit of compute. This, gas mileage like number, has continued to fall, exponentially
even as clock speeds have stayed relatively constant. As a result, over time, the practice of retaining
hardware for long periods can lead to significant hidden energy and emissions costs relative to
replacing hardware. Ultimately these costs integrated over a few years can potentially exceed the
cost of hardware replacement.
This paper presents a project to look quantitatively at this topic. It leverages the high-energy

physics HEP score benchmark code as a stable measure of energy and emissions performance of
computer systems over time Group [2023]. In the paper we describe the benchmark and how we
use its information. We present preliminary data gathered from a representative hardware fleet
and describe an ongoing experiment to examine these issues in a real-world scenario.

Our work contributes a possible quantitative framework and for answering questions about when
to replace old systems in research computing environments. In many cases, for cost reasons, these
environments are based on physical hardware operated by university staff. In these environments
there does not appear to us to be a satisfactory existing framework for answering this question. We
believe the framework and implementation we describe can be applied in any research computing
environment. While specific numbers on energy and emissions profiles and hardware mix may
vary, the formula and implementation we describe is general. They can form the basis for focusing
stake holder decision making in any research computing organization.

1.1 Decision Model
The model aims to address assumptions surrounding the financial and environmental impact of
research computing and recognizes its significance within the broader scope of carbon emissions.
By focusing on the replacement and optimization of computing resources, the project seeks to
minimize the environmental footprint while maximizing computational efficiency. To achieve
these goals, we’ve developed a model for regular equipment renewal that can be tailored to any
data center’s needs. Users can input variables specific to their data centers, such as electricity
cost, carbon emissions per kWh of electricity, PUE, etc. This model is accessible to individuals
without background knowledge of sustainable computing and is guided by factors such as workload
optimization, financial constraints, and processor lifecycle considerations.

Central to our methodology is the collection and analysis of data on processors in data centers.
The main requirements for data collection include the model of processors in the data center,
and the model potential replacement processors, along with their TDP, purchase price, and HEP
score benchmark for each model. Systematic organization of collected data enables users to assess
current operational costs from both financial and environmental perspectives, establish a baseline
for evaluating alternative options, and calculate the financial payback time if the data center gets
renewed. The model allows for the discovery of alternative pathways to improve the performance
of data centers by comparing the financial and environmental impact of replacing specific old
processors with new ones.

1.2 Carbon operational Cost
Acknowledging sustainability’s broader scope, our methodology incorporates an assessment of
embodied carbon in processors. However, our primary focus lies on carbon operational costs due to
their long-term impact. By prioritizing carbon operational costs, we gain insights into the enduring
sustainability of MIT’s research computing infrastructure.
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1.3 Benchmarking
To ensure consistency and reproducibility, we employ the HEPScore23 (HS23) benchmark provided
by the Benchmarking Working Group [Group 2023]. This benchmark accurately measures per-
formance under scientific research experiment requirements, aiding in the effective evaluation of
computing resources and hardware procurement.

2 DASHBOARD INTERFACE
The dashboard provides a comprehensive toolkit for evaluating processor attributes, performance
metrics, and environmental impact indicators within MIT’s data center infrastructure. Users can
compare processor models based on computational power, analyze their environmental footprint,
and assess financial implications. Interactive features enable users to make informed decisions
regarding processor selection, optimizing computational efficiency while considering sustainability
and financial factors. Through its Performance Comparison, Sustainability Analysis, and Financial
Analysis sections, the dashboard empowers users to navigate data center renewal initiatives with
clarity and effectiveness.

The interface is designed to be clear and easy to use. Users can switch between different sections
by clicking the topic names on the top bar. In the center, columns display various values and
data for each corresponding CPU model. The "Current Server" and "New Servers" sections are
color-coded for easy differentiation between the models currently in use in the data center and
potential replacement models. You can also use the filter to compare several chosen models. Users
can click on each row to view detailed information about that model. User input parameters are
listed on the right side, allowing users to change variables within a set range to calculate specific
values by customizing the environment.

Fig. 1. Processor Replacement Tableau Dashboard Interface of the Per Score Measurement Section.

2.1 Performance Comparison
This section provides a comprehensive comparison of processor attributes and performance metrics,
aiding users in selecting the most suitable processor model for their computational needs. Users can
visualize and analyze the performance of different processor models based on desired computational
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power, measured by the HEPiX score. Interactive features allow users to select a baseline processor
and observe performance differences among various models. By leveraging this section, users can
make informed decisions regarding processor selection to optimize computational efficiency. The
calculation of the electricity use each year of a processor is shown below:

𝐸 = TDP ∗ 𝑡 ∗ 365 ∗ PUE ∗ (0.3 + 0.7 ∗ 𝑟𝑢) ∗
1

1000
𝐸 = Electricity Use (kWh) / Year
TDP = Thermal Design Power

𝑡 = Length of Day
PUE = Power Usage Effectiveness

𝑟𝑢 = Utilization Rate

Since even if the utlization of a Processer is 0%, it will still has power consumption. Here, we set
it as having a default 30% consumption even if the processor is not computing. The rest of 70% are
scaled up to a range of 1 so that the user can control the utlization percentage on the dashboard
form 0 to 1. Even if the user set the utlization rate to 0, they will still see the electricity concumption
of the processors.

2.2 Sustainability Analysis
In this section, users delve into the environmental impact of each processor model through a
detailed sustainability analysis. Graphical representations illustrate carbon emissions and electricity
consumption, enabling users to assess the environmental footprint of each model. Parameters such
as carbon emission rate, electricity cost, and hours of operation per day can be fine-tuned to gain
insights into environmental impact variations. Crucial sustainability metrics, including carbon
operational cost, electricity cost, and pounds of coal burned per year for each model, are provided to
facilitate environmentally conscious decision-making [Agency 2024] . Let 𝐶 =Carbon Operational
Cost (kg) / Year, 𝐸 = Electricity Use (kWh) / Year, and 𝑟𝑏 = Carbon burning rate (kg / kWh). The
equation we use to calculate the carbon operational cost is:

𝐶 = 𝐸 ∗ 𝑟𝑏 (1)

2.3 Financial Analysis
The Financial Analysis section offers insights into the financial implications of selecting different
processor models. Users input the purchase price of each processor and subsequently evaluate
the financial payback time based on savings in electricity costs. Through interactive features,
users can compare the number of replaced processors required for each model, aiding in assessing
overall financial feasibility. By utilizing this section, users gain a comprehensive understanding
of the financial considerations associated with each processor model, facilitating cost-effective
decision-making in data center renewal initiatives. The calculation of the Financial Payback Time
is shown below:
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𝑇𝑓 =
𝑃𝑛𝑒𝑤 ∗ 𝑁

𝐸𝑜𝑙𝑑 ∗ 𝑁𝑜𝑙𝑑 − 𝐸𝑛𝑒𝑤 ∗ 𝑁𝑛𝑒𝑤

𝑇𝑓 = Financial Payback Time
𝑃𝑛𝑒𝑤 = Purchase Price of the New Processor

𝑁𝑜𝑙𝑑 = # Number of Old Processor
𝑁𝑛𝑒𝑤 = # Number of New Processor

𝐸𝑜𝑙𝑑 =
Electricity Cost ($)

Year
of the Old Processor

𝐸𝑛𝑒𝑤 =
Electricity Cost($)

Year
of the New Processor

3 CONCLUSION AND FUTUREWORK
Our ongoing work highlights the potential for revenue-neutral improvements in the operational
energy and carbon performance of research computing data centers. By utilizing the HEP score
high-energy physics benchmark suite, we can quantitatively map the landscape of heterogeneous
fleets of servers of different ages. These practices, based on the approach described in this article,
are expected to yield exclusively positive outcomes. Operational costs associated with energy
purchases and environmental emissions could be reduced, while research productivity could be
increased. If our ongoing experiment hypothesis is validated, we advocate for the implementation
of proactive life-cycle management practices on computer equipment.
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A CALCULATED FIELDS AND PARAMETERS
A.1 Processor Details

• Score: HEPiX CPU Benchmark for describing experiment requirements, lab commitments,
existing compute resources, and procurement of new hardware.

• TDP (W): Thermal Design Power, referring to the power consumption under maximum
theoretical load.

• Electricity Cost ($) / Year: Annual electricity cost per processor.
• Electricity Use (kWh) / Year: The amount of electricity used by a processor each year.
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• Carbon Operational Cost (kg) / Year: Carbon emissions released annually. item Equivalent Pounds of Coal Burned:
Equivalent pounds of coal burned to produce the same amount of carbon emissions by a
processor annually.

A.2 Per Score Measurements
• Carbon Operational Cost (kg) / Score: Per-score measurement of carbon operational
cost.

• Electricity Cost ($) / Score: Per-score measurement of electricity cost.
• Electricity Use (kWh) / Score: Per-score measurement of electricity use.

A.3 Single Processor Estimation
• Single Model - # Processor Needed: The number of a particular type of processor

needed to reach a desired amount of performance score, assuming we only use a single type
of processor.

• Single Model - Carbon Operational Cost (kg) / Year: The carbon emissions cost
each year, assuming using one type of processors.

• Single Model - Electricity Cost ($) / Year: The electricity expenses each year, as-
suming using one type of processors.

• Single Model - Pounds of Coal Burned / Year: The equivalent pound of coal burned
to produce the same amount of carbon emissions by the processors annually.

A.4 Baseline Comparison
• # New Processors Needed: Difference of number needed between any chosen processor
and the baseline processor to reach a desired amount of performance score.

• Saved Carbon Operational Cost (kg) / Year: Difference of carbon operational be-
tween any chosen processor and the baseline processor.

• Saved Electricity Cost ($) / Year: Difference of electricity cost between any chosen
processor and the baseline processor.

• Saved Pounds of Coal Burned / Year: Difference of equivalent amount of carbon emis-
sion produced by coal burned between any chosen processor and the baseline processor.

A.5 Financial Payback Time
• Purchase Price ($): The purchase price of a model of processor.
• Financial Payback Time (Year): The time it takes to make it worth it to purchase a new
processor. By using the money it spends to buy the processor that meets the requirement,
and divide by the saved electricity cost over a year. Purchase Price of Replaced processor
($): Purchase Price of Replaced processor.

• Yearly Savings ($): The saved electricity cost each year after the processor renewal.
• Electricity Cost of the New processor ($): Electricity cost of the new processor.
• Electricity Cost of the Old processor ($): Electricity cost of the old processor.
• Score of the Old Processor: Performance score of the old processor.

A.6 Parameters (User Inputs)
• # Old Processors: The model of the old processor that will be replaced.
• # Old Processors to Replace: The number of the old processors that will be replaced.
• Performance Score Required: The desired computational power of the data center, mea-
sured by the HEPiX score.
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• Baseline Processor: The baseline processor to be compared with in the baseline compar-
ison section.

• Carbon Emission (kg CO2 / kWh): The amount of carbon generated per kWh electricity
used in this data center.

• Electricity Cost ($/kWh): The monetary cost of each kWh of electricity.
• Length of Day: The length of time the data center runs each day.
• PUE: Power usage effectiveness of the data center
• Utilization Percentage: Howmuch percent a processor is utilized. The range is between
0 and 1, with a step size of 0.05.
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