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1. Introduction

Climate change as caused by the anthropogenic emission of greenhouse gasses is
disrupting the equilibrium of the planet. This has prompted the urgent need to develop mitigation
and adaptation strategies that reduce greenhouse gas emissions and prepare us for a changing
world. Artificial Intelligence (AI) and Machine Learning (ML) are powerful computational tools
that can enhance technologies and shape policies related to climate change mitigation and
adaptation.

With regard to mitigation strategies, we will need to make sweeping changes to
electricity systems, transportation, buildings, and land use. These changes require making
existing systems more efficient in order to reduce energy consumption and emissions. AI and
ML models can leverage the vast amounts of data produced by these systems to make their
operation more efficient. For adaptation, building resilience and managing disasters will be key.
AI and ML are essential tools for forecasting extreme weather events and identifying areas that
may be vulnerable to disasters. Furthermore, these computational methods can improve weather
and climate models which are used to understand long-term atmospheric changes.

ML tasks that are related to climate change typically deal with spatio-temporal data and
systems bound by physical laws which can be challenging to represent with present-day ML
models. These challenges stem from the need for large datasets so that the models can learn
physical relationships. Oftentimes, datasets are not large enough or are too specific to a certain
domain that it doesn’t allow the model to generalize and adequately derive those relationships.
This prompts the need to better understand and quantify specific characteristics of datasets that
contribute to the underperformance of ML models for tasks related to climate change.

Currently, we do not understand the properties that are prevalent in climate
change-related tasks and datasets. For instance, characteristics like data imbalance and
distribution can affect the ability of a model trained on that data to generalize. Due to the
spatio-temporal nature of datasets in the climate change domain, certain characteristics may be
more prevalent. Furthermore, there exists a gap in our understanding of what attributes of a task
and its associated data leads to poor performance for particular types of ML models. We are
particularly interested in large-scale multi-tasking ML models which are models that can be
applied to tasks in multiple domains while still maintaining performance or even outperforming
more specialized models [1]. We hypothesize that multi-tasking models perform similarly on
tasks with datasets that share common characteristics even if they are from different domains.



As such, we attempt to bridge this gap by performing a comprehensive analysis of tasks
and datasets related to climate change. This can facilitate the design of new ML solutions in
climate change domains, and potentially lead to advancements in research on more general ML
methods [2, 3]. Furthermore, it can inform the development and improvement of useful datasets
by highlighting what characteristics they might lack.

Previous work has explored potential applications of ML and AI for climate
change-related tasks. Rolnick et al. created a comprehensive overview of ML applications for
tackling climate change including a significant number of applications associated with enhancing
renewable energy [4]. Mosavi et al. and Donti et al., review numerous applications of ML for
facilitating the development and operation of sustainable energy [5, 6]. Nguyen et al. developed
the first foundation model for ML tasks in weather and climate modeling [7], suggesting the
potential for a multi-tasking type of model within this domain. Koh et al. introduce a collection
of 10 datasets, some of which are associated with climate change-related tasks, and assess how
the distribution of the data can affect default model performance [8].

This paper begins by introducing 2 climate change-related tasks. These tasks are an
extension of work previously done on this project by Aryandoust et al. [9] which introduced and
evaluated 6 tasks associated with 17 total datasets. In order to evaluate these tasks and datasets,
we present a method for converting the datasets into a unified format. This conversion to a single
representation allows for simpler comparison between data of different modalities and for a
smaller set of multi-tasking ML models to be used on the data. Then, using this unified format,
various scores are calculated for each dataset. We then compare the scores between datasets to
determine similarities and differences between the tasks that they are used for and potential ML
model types that are suitable for tasks with particular scores. We plan to release a public
repository with the datasets and code that performs the calculation of the scores.

2. Tasks and Datasets

Previous work on this project by Aryandoust et al. [9] has evaluated 6 different tasks
consisting of a total of 17 datasets. These tasks include predicting the electric load profile of
buildings, active power generation of wind farms, average travel time of a car for a certain path,
atmospheric radiative transfer between layers of the atmosphere, and structure of
catalyst-adsorbate pairs for hydrogen electrolysis and fuel cells, as well as the annotation of
policy directives and regulations. Building upon these tasks, this work will evaluate 2 additional
tasks and datasets including capacity expansion planning for power grids and solar panel
identification from aerial imagery. We add these datasets in order to cover additional machine
learning paradigms that previous work has not explored. In particular, capacity expansion
planning involves estimating a solution to an optimization problem while solar panel
identification is image classification.

Capacity Expansion Planning. Given the hourly fuel mix, hourly interface flow, hourly
real time price, hourly generation for thermal generators larger than 25W, daily nuclear capacity



factor, and monthly hydro generation data for the New York State grid, we want to determine
viable types of generators to add to the grid. As demand for renewable energy grows, it will be
crucial to understand the optimal locations to place new generators so that they meet the demand
of consumers while keeping the grid balanced.

Solar Panel Identification. Given an aerial image of a PV installation, we want to create
segmentation masks that highlight the solar panels. As small-scale PV installations become more
common, the identification and mapping of these installations will be valuable for power system
operators responsible for balancing the grid and who currently have limited knowledge of their
distribution and generation. Previously, Wang et al. [10] developed a model that accurately
identifies solar panels and drew conclusions from the model about the adoption of solar in
low-income communities. The dataset consists of 13000 installations with ground truth
segmentation masks which we refer to as solar-13000.

3. Unified Representation

In order to create a single representation for the data, we leverage the fact that each
dataset consists of data points that vary across time, space, or both. This allows us to create a
unified spatio-temporal representation. To do so, we divide each datapoint’s features into those
that are time-variant xt meaning that they are constant across space and only change across time,
space-variant xs meaning that they are constant across time and only change across space, and
space-time-variant xs,t meaning that they change across both time and space. By splitting the
features like this, we are able to make comparisons between equivalent categories between
datasets. This is useful for climate change-related tasks which are heavily dependent upon
spatio-temporal data specifically bounded by physical laws.

4. Dataset Scores

After converting the datasets into the unified representation, four scores will be
calculated for each dataset: sample imbalances (SImb-score), spatio-temporal out of distribution
(STood-score), input-output (IO-score), and outlier.

SImb-score. The sample imbalances score quantifies selection bias by measuring the size
of data imbalances and sample biases. It is calculated using the average of the JensenShannon
divergence (JSD) between the distribution of each feature and the uniform distribution.

STood-score. The spatio-temporal out of distribution score quantifies the distribution shift
of data points for the unified data format across time and space. This provides an estimate of the
epistemic uncertainty associated with the dataset. It is calculated using the average JSD between
the distribution of features in our training data and our validation or testing data.

IO-score. The input-output score quantifies the sensitivity of the labels with respect to
changes in single features. This provides an estimate of Aleatoric uncertainty. It is calculated by
taking the mean incremental ratio between all feature-label paris.



Outlier-score. The outlier score identifies the presence of subgroups and edge cases in the
data which can help quantify evaluation bias in the dataset. It is calculated using the distribution
of outlier values determined by the Tukey’s fences method.
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