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Introduction
In chemistry, synthesis planning is the process of generating a plan or sequence of

chemical reactions to produce a specific target molecule. The goal of synthesis planning is to

find the most efficient and cost-effective route to the target molecule, taking into account factors

such as reactivity, availability of materials, and potential side reactions. Pioneered by E. J.

Corey in the 1960s, retrosynthetic analysis through a disconnection approach introduced the

development of reusable protocols that could be applied when designing a synthetic plan.1

Corey offered the first concrete algorithm for producing a logical synthesis of a target molecule .

The technique involves reducing the target molecule into a sequence of progressively simpler

structures along a pathway which ultimately leads to the identification of simple or commercially

available starting materials (example shown in Figure 1). When done manually, retrosynthetic

analysis produces routes that depend on the knowledge of the chemist, their inherent biases

toward specific reactions, and the equipment available to them. It is common to find

"conversations" in the literature where one chemist developed a synthetic route to a target

molecule and publishes the route in an article. Afterward, another chemist chooses to replace

one or more steps of the previous

author with their own preferences

and reports the

benefits/drawbacks.2,3 Such

"conversations" are excellent

examples of ongoing peer review in

science to evolve human

knowledge. However, the process

can take many years for a single

iteration, making it slow and very

expensive.

Since the 1960s, various computer-aided synthesis planning (CASP) applications have

been developed to mimic chemists’ thinking and help organic chemists in their work, based on

the principles established by Corey.4–12 Ideally, these CASP tools would be given a target

molecule input, and work backward to generate a list of reactions that each connect that target
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molecule to commercially available starting materials through a series of chemically attainable

reaction steps. CASP tools generally consist of five major components: A template library

containing rules by which disconnections are proposed; A recursive template application engine

that generates candidate reactants for target product molecules; a database containing

compounds that are commercially available; a strategy to guide the retrosynthetic search toward

chemicals in that database; A method for single-step or pathway-level scoring, creating

preference for fewer steps.13

Given the size and complexity of chemical space, the evolution of CASP applications

has come to include machine learning techniques.13–16 Such techniques have the ability to

approximate complex functions where the exact relationship between input and output is not

easily expressed. Increased performance in machine learning techniques can be generally

attributed to a combination of improvements in hardware capability and data availability. As it

stands, chemical databases and automated management of synthetic knowledge such as

Reaxys17, Scifinder18, ChemSpider19, and SPRESI20 are invaluable tools to organic chemists,

especially for those searching for literature sources or examples of analogous reactions.

Searches are mostly manual, step-by-step procedures with only rudimentary capabilities to

evaluate reaction sequences, which underuses the growing power of the modern computer.11

Deep learning, a type of machine learning, has proved itself to be a promising direction

for retrosynthesis planning. In 2017, Seglers et al.21 combined the strengths of neural networks

and symbolic reasoning to enable this novel machine learning approach for retrosynthesis and

reaction prediction. Deep learning improved the accuracy of predictions and the interpretability

of the models, making it a significant advance in the field. The success of deep learning can be

attributed to its nature of having: automated feature extraction, which replaces the need for

manual feature engineering; the capacity to handle large complex data; and generalizing

learned patterns to new cases.22

Data Sourcing
The construction of deep learning algorithms, similar to traditional statistical methods,

requires sufficient data to be supplied for model training. Sources for chemical reaction data

across institutions and organizations differ in scope, format applicability, authorization quality,

and other aspects.23 Frequently used datasets include Reaxys24, SciFinder25,26, the United

States Patent and Trademark Office (USPTO), and Pistachio.

Reaxys, operated by Elsevier, offers users an interface and database to retrieve relevant

chemical literature, patent information, valid compound properties, and experimental
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procedures. Reagent information, reaction conditions, and yields are provided as

non-standardized text as they are collected from publications. For this reason, reaction data

from Reaxys requires additional data processing to standardize them and make them useful for

any machine learning purposes.

Similar to Reaxys, Scifinder, produced by Chemical Abstracts Service (CAS), is a much

more comprehensive database containing chemical literature including patents, journals,

conference papers, and web resources.27

Given the cost of Reaxys and Scifinder, researchers may look to the open-source United

States Patent and Trademark Office (USPTO). Due to the size of the USPTO database,

extracted portions of the USPTO are used to train and validate as separate databases. The

USPTO dataset became USPTO-50k and USPTO-full as subsets of preprocessed chemical

reactions.28 The popular USPTO-50k contains 50,000 randomly selected reactions that were

classified into 10 reaction classes.

Alternatively, researchers look to Pistachio, supported by NextMove Software.29

Pistachio experiences continuous updates to its data mining pipeline and adds newly patented

reactions to the dataset. As a result, Pistachio is a superset of the USPTO in addition to the

European Patent Office (EPO), and the World Intellectual Property Organization (WIPO).

Data Representations
Chemical structures and chemical structure transformations (reactions) are at the core of

cheminformatics. The efficiency of cheminformatics applications, such as deep-learning-based

retrosynthesis, is tightly coupled with the adequate representation of the structure and reaction

of molecules. 30 As a result, the quality of the

machine-readable data representations of the

chemical reaction will directly affect the

subsequent application.

One approach to modeling chemical

reactions is using a graphical representation.

Condensed graphs of reaction (CGR) are a

popular cheminformatics reaction

representation. The CGR is a superposition of

the reactant and product graphs of a chemical

reaction and thus an ideal input for

graph-based machine learning approaches.31 A
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CGR (figure 2) contains all atoms involved in a reaction as vertices (or nodes) connected by all

bonds (formed, created, and broken) as edges (or links). This graphical representation indicates

changes in the properties of atoms and bonds. This approach does require atom-to-atom

mapping, such that the behavior of each atom and bond in the reaction is accounted for

properly.32 CGRTools is a tool for processing reactions based on the CGR approach. For more

details on how CGRTools operates, the reader is directed to further reading.33

In addition to graph representations, researchers have developed various

machine-readable string notations for representing chemical reactions. Reaction SMILES

(Simplified Molecular Input Line Entry System) is a linear notation for describing chemical

reactions similar to SMILES. SMILES uses a string to describe molecular structures, while

reaction SMILES (figure 3) represent each reactant and product with a SMILES string. The

reaction itself is represented by the symbol “>”, following the form,

[reactants]>[agents]>[products].34 While SMILES is a powerful and flexible approach to

describing reactions, different researchers studying the same reaction may generate different

descriptions of one reaction. As a result, the RInChI (International Chemical Identifier for

Reactions) project, an extension of InChI (International Chemical Identifier), set out to create

unambiguous descriptions for

reactions.35 RInChI grammar,

however, is relatively more

complicated than that of Reaction

SMILES.36

Atom Mapping
Inconsistent data quality remains an issue to be addressed in the data preparation

stage. Atom-to-atom mapping (AAM) often ranges from poor to nonexistent.37 AAM refers to the

application of a procedure that establishes a correspondence between the atoms of reactants

and products. AAM assists in the identification of a reaction center which aids in the preparation

of reaction templates, which are to be discussed.38 Accurate atom-atom mapping can facilitate

downstream tasks such as calculating the number of conserved carbon atoms in a reaction to

determine the metabolic efficiency or tracking atoms to understand and demonstrate the

reaction mechanism.39 Attempts to develop accurate atom-to-atom mapped reactions reflect a

larger issue of unknown reaction mechanisms, which often require a deeper understanding of
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chemical reaction than available in current scientific literature. Methods of AAM include

structural and optimization-based approaches.

Structure-based approaches determine common chemical structures in order to match

the atoms of the reactant with that of the product. Tools such as AutoMapper40 and ICMAP41

pioneer this method. AutoMapper accepts many chemical formats such as InChI and SMILES

but lacks the ability to identify the reaction center. Edit with ZoteroICMAP, however, can mark

the reaction center. Structure-based approaches, however, function on the condition that the

reactants and products maintain similr enough substructure to be compared and mapped.

Optimization-based approaches use Mixed Integer Linear Optimization (MILP) to identify

atom mappings.40 Determination of REAction Mechanisms (DREAM)39 and Minimum Weighted

Edit-Distance (MWED)38 are tools that use such an approach. Optimization-based approaches

aim to minimize the number of bonds broken, bonds formed, and bond order changes, between

reactants and products. Like DREAM, MWED assigns weights to bonds of the molecules in the

reaction and a specific cost when a bond is modified.42

Machine Learning Models
Once reaction data has been formatted and if necessary, mapped, it can be fed into a

machine-learning model to be trained. Methods for constructing machine learning models of

retrosynthesis planning can be grouped into template-based and template-free. Template-free

methods include those that are sequence-based and those that are graph-based.

The template-based approach compares the target molecule with a large set of

templates to determine potential precursors. The template is a set of reaction rules that consist

of a set of minimal transformations to characterize a chemical reaction.43 These templates are

extracted from atom-mapped reaction examples.13 The purpose of using templates is to find a

connection from this target molecule to potential precursors. A problem arises, however, when it

comes to selecting the appropriate reaction template. Accounting for functional groups is

another problem that is addressed appropriately by Segler et al.44 such that molecular context is

accounted for in their modeling. While template-based methods are highly interpretable there

are two common problems: poor generalization as the search of precursors is limited to

extracted templates; and poor scalability as the number of candidate precursors increases13.

The template-free approach finds unclear relationships about reaction mechanisms in

data. Sequence-based methods, a template-free approach, use neural sequence-to-sequence

models that learn from patent data to perform retrosynthetic reaction prediction. The model is

trained end-to-end eliminating the need for reaction rules and atom mapping. Graph-based
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methods, another template-free approach, use graph neural networks (GNN) that can be taught

through condensed graphs of reactions (CGR)31. The goal of GNNs is to learn the

representations of each atom by aggregating representations of its neighbors through

messages passing across the molecular graph. The learned representations can be used to

predict the reaction properties of the molecule.31,33,45,45

Conclusion and Outlook
Deep learning-based methods for retrosynthesis planning are being applied in organic

synthesis and drug discovery, with the potential to advance personalized medicine. Throughout

the analysis of contemporary literature, there is an apparent lack of data related to conditions

fed into deep learning models such as reagents, catalysis, solvents, byproducts, and

temperature. A potential issue with the inclusion of this data, and upscaling of current methods,

include computational difficulties. To overcome these computational challenges, there must

either be an increase in hardware capabilities or improvements in current methods such as

improvement on focused pathway predictors such as those that use the Monte Carlo Tree

Search to quickly sample precursors and resultingly relieve computational demands.21

Additionally, an improvement of current data sources would greatly streamline the entire

process. While the USPTO is a very popular dataset for model training, it would be appropriate

to construct a standardized dataset that would provide deep learning algorithms with sufficient

training data in a readily available manner. Ultimately, a more perfect retrosynthesis algorithm

would require continued collaboration between chemists and computer scientists to be

developed. Especially when working in deep learning architectures in such a chemically rich

context.
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