




Decarboniza�on strategies for Long-Haul Trucking - Hydrogen,
Ba�ery Electric and Biofuels 
Sayandeep Biswasa, Kariana Morenoa, Rob Jonesa, Wai K. Chengb and William H. Greena

Why do we care?

Understanding Long-haul
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“  Capital Cost 
by a factor of 5

“Trucks have high energy demand. One day
of driving consumes 80 gallons  of diesel”

“Labor & Fuel make up majority of 

(engine, transmission, etc.) has 

Capital Cost ” 

Total Cost 
of Trucking
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Greenhouse Gas Emissions by Sector 

Medium-and heavy-duty
trucks (7.1%)

Transportation
(28.4%)

Electricity generation
(27.1%)

Industry
(22.5%)

Agriculture
(9.9%)

Commercial
(6.7%)

Residential
(5.7%)

• Medium and heavy duty trucks account for 7.1% of the total GHG  
  emissions

• Trucks are an indispensable part of the modern supply-chain, any 
   increase in cost of trucking is felt universally

• Solutions must be economically viable and practically implementable
  
 
 
     

Decarbonization of trucks is a hard problem

Transesterifica�on

Standard Diesel
Truck

Hydrogen

“Biodiesel diesel, thus 

Crops need land and water to grow. 
Both scarce resources, leading to scalability concerns

“Rela�vely 
inexpensive”

“No net carbon 
emissions from 

burning biodiesel”

Soy Bean

“89% reduc�on 
from diesel”
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Biofuels

Renewables
18%

Nuclear

Fossil Fuels

20%

62%

$1.14
USD/mi

“CO2 emissions
arise from burning

fossil fuels to
generate electricity”

“Grid is expected to be
 cleaner in the future”

“We need a 1500 kWh 
≈ 6 tonnes, costs $200k

 

Today’s Electricity Grid
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“Blue hydrogen is
cheap and

$2 USD/kg $8 USD/kg
3.6 gCO2/gH2 0.6 gCO2/gH2

“Green hydrogen 
is expensive but 

very clean”

H2

Compressed Liquified

 Energy lost - 20 to 30%
Compressor cost > $1MM USD

Boil-off losses
Liquifier is expensive

*90% Carbon Capture

Delivery & Refueling

Production

15% | 85%

50% | 55%
$1.70
USD/mi

1020
gCO2/mi

Major changes to trucking practices necessary to accomodate 
for charging. Practical implementation is challenging.  

Hydrogen

  Hydrogen needs better deliver and refuelling methods
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 To learn more scan QR code provided on page 6 

Today (2020) Our Projections (2050)

“Long-haul trucking remains an open problem
with no clear winner”

for long-hauling such as

to improve delivery and refueling to further reduce H2

Summary

They are organic molecules that can be reversibly hydrogenated (exothermic) 
and de-hydrogenated (endothermic) to absorb and release hydrogen as needed

Pros Cons LOHC Today

infrastructure

High thermo-stability
and inert

Mature technology can
handle fuel demand
for long-hauling

30% energy 
penalty due to 
highly 
endothermic 

needs compression
before using it 
as a fuel

Our Idea: 

“40% of the fuel’s energy
is wasted in the exhaust 

engine. We will use this

“No need for compression 
as we eliminate any need

to store hydrogen as a 
gas”
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Liquid Organic Hydrogen Carriers (LOHCs)
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Anthro-Engineering Decarbonization 
at the Million-Person Scale

Project Leads: Manduhai Buyandelger (Anthropology) and Michael Short (Nuclear Science & Engineering)
Postdoctoral Associate: Lauren Bonilla

Anthropology + Engineering

Abstract

Allen, Ryan W., Enkhjargal Gombojav, Baldorj Barkhasragchaa,
Tsogtbaatar Byambaa, Oyuntogos Lkhasuren, Ofer Amram, Tim K. Takaro, and Craig
R. Janes. "An assessment of air pollution and its attributable mortality in Ulaanbaatar,
Mongolia." Air Quality, Atmosphere & Health 6, no. 1 (2013): 137-150.

Guttikunda, Sarath K., Sereeter Lodoysamba, Baldorj
Bulgansaikhan, and Batdorj Dashdondog. "Particulate pollution in Ulaanbaatar,
Mongolia." Air Quality, Atmosphere & Health 6(3):589-601 (2013).

• How can we sustainably scale million-person 
decarbonization efforts?

• How have member companies performed people-centric 
(not just user-centric) research to ensure that their products, 
solutions, and ideas will stick?

• How do member companies build in solution sustainability 
beyond the product/solution launch for similar scale efforts?

• How can we meaningfully affect decarbonization, especially 
in areas which cannot afford the up-front capital 
expenditures on their own?

Our project aims to create a generalized workflow for MCSC 
aim #8: “Equity-centered sustainable solution-building in 
climate and sustainability.” Ulaanbaatar is a perfect example, 
where its poorest and most vulnerable residents are 
disproportionately affected by both the negative effects of 
climate change and misapplied solutions.  Due to the extreme 
and multiple climatic, logistical, and socio-economic 
constraints, the findings of our project will be applicable to 
diverse contexts of varying scales.

The coldest capital city in the world, Ulaanbaatar, requires the 
most heat per person for its citizens to keep warm.
Ulaanbaatar’s air quality is also among the worst (Guttikunda 
2013), causing widespread respiratory illness and death, 
particularly in children (Allen 2013). To combat this 
catastrophe, the Mongolian government banned both the use 
of coal and migration to the city and enforced the use of 
cleaner burning charcoal briquettes. However, these 
interventions have failed to solve the crisis, even causing 
further illness, death, and societal discontent.

Through utilizing a human- and anthropology-first perspective, 
we will prototype a molten salt heat bank, which both meets the 
heating needs of households and positively impacts their 
livelihoods.

MIT students will travel to Mongolia during IEP in 2023/2024 to 
conduct research in partnership with mentors and peers at the 
National University of Mongolia. Together, they will:

1. Study and design the heat bank distribution network,
2. Carry-out sociological surveys of residents on topics 

related to heat and energy,
3. Conduct formal and informal interviews with residents,
4. Conduct participant observation of ger districts and 

home-stay with heat bank usage observation,
5. Organize workshops with key stakeholders.

By fusing together Anthropology (the study of socio-cultural 
specificities in a holistic way) and Nuclear Science and 
Engineering, we will build a foundation for a trans-disciplinary 
field of Anthro-Engineering where the products are co-designed 
by a variety of actors and are based on socio-economic, 
environmental, and cultural constraints. 

This project focuses squarely on the sustainability of 
sustainability solutions, by giving equal weight to the people 
whose lives will be affected by climate change solutions as the 
solutions themselves. 

With the growing urgency of climate change, large-scale 
communities must decarbonize as quickly as possible. 
Top-down solutions such as carbon credits and 
heavy-handed, local energy policies have yet to bear sufficient 
fruit, leading us to hypothesize that social, political, and 
anthropological factors must be given equal consideration to 
technical ones. We will develop a generalized framework to 
anthro-engineer decarbonization at the scale of millions of 
people – creating a solution for one focused demographic 
while generalizing our results to be used in other 
million-person scale communities. 

We focus on Ulaanbaatar, Mongolia, where drastic 
environmental degradation to air pollution and climate change 
have led to rapid erosion of both environmental and 
democratic living conditions. This cross-school project will 
explore the contexts for designing and implementing a locally 
specific, culturally acceptable, and socio-economically viable 
reusable molten salt heat bank, amenable to energy input by 
concentrated solar and nuclear power, to reduce this 
dependency of citizens on their government, and sustainably 
decarbonize the city.

Prototyping Solutions in Mongolia Expected Outcomes

Key Questions for MCSC Members
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ECO-LENS Task 1: Urban Vegetation Mapping
750km3751500

Global Biodiversity HotspotsHotspot urban areas in the US

California Floristic Province

North American Coastal Plain

Tumbes-Chocó-Magdalena

Tropical Andes

Global Biodiversity Loss

Deep CNN model and Object-Based Classification

Biodivercities - Colombia

Component 1: Remote sensing. Using high-resolution 
Sentinel-2 (MSI) multispectral images that are suited to 
map city-level urban vegetation and non-urban vegeta-
tion around a city. The data from Sentinel-2 (MSI) will be 
used for  Task (1) to map urban vegetation coverage.

Component 2: Tree Canopy Identification.  Detailed 
mapping using high resolution LiDAR data collected 
from Unmanned Aerial Vehicles (UAVs) for Task (2).  
Collected data will be used as input to train deep CNN 
models to detect the individual tree crown delineation 
using Multiscale Analysis and Segmentation (MSAS) 
methods to output Tree Canopy Height (TCH) profile.

Component 3: Urban Biodiversity Profile. Output from  
Task (2) alongside labeled wildlife habitat for various 
tree types will be used as a training input for Task (3) to 
output tree class and related urban wildlife habitat. 

Sample of 51 Urban Areas over 300.000 people located 
in the two main Biodiversity Hotspots in the US.

Map sources: Weller, Hoch, Huang, Atlas of the End of the World; Conservation International, Resilience Atlas 

36 global biodiversity hotspots, characterized by being the most biologically rich regions (containingat least 1,500 endemic vascular plants), 
yet severly threatened (having lost at least 70% of its primary native vegetation).  

Colombia, the most biodiverse country by 
square kilometer, launched the Biodiver- 
cities program in 2021 to support cities in 
the development of sustainable, inclusive 
and nature-positive urban development 
strategies. The program is led by the Min-
istry of Environment and Sustainable De-
velopment, in coordination with the may-
or’s and planning offices of 14 cities in 
Colombia. In addition to the 14 biodiver-
cities, cities over 300,000 people (6) locat-
ed in the two global hotspots were includ-
ed in the sample for Task 1.

Biodiversity is declining worldwide, driven foremost by the intensification in land management and the 
transformation of natural areas for agriculture, industrial-scale forestry production, and human settle-
ments. Urban areas have doubled since 1992 and, in comparison with 2020, are projected to expand 
between 30% and 180% until 2100. Notably, most of the urban growth will happen in the global south 
in regions of high biodiversity and it will affect global ecosystems far beyond urban areas, through re-
source demands, pollution, and climate impacts. Urban biodiversity management is an emerging field 
and there are significant gaps in our understanding that are critical to improving biodiversity conserva-
tion policies and management in urban areas to support global biodiversity outcomes. 

ECO-LENS: Mainstreaming biodiversity data through AI
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In situ agriculture & aquaculture 
microbiome monitoring using scalable 
optofluidic microscopy

Motivations & Goal

Methodology
Optofluidic microscopy combining lens-free in-line digital holographic
microscopes (DIHM) with microfluidic channels for microbes filtering.
Scalable design enable higher spatial resolution.

Deployment

Progress

Captured 
Image

Numerical
construction

DNN
reconstruction

Field Image
Spirulina

1951 USAF 
Target

Field Image
Ameba

1951 USAF 
Target

Charlene Xia
MIT MechE PhD - cxia_1@mit.edu

Katana Finlason
MIT MechE - katanaf@mit.edu

1. Stefanie Muller - MIT (stefanie.mueller@mit.edu) 
2. David Wallace – MIT (drwallace@mit.edu)

3. Rodrigo Costa – University of Lisbon (rodrigoscosta@tecnico.ulisoba.pt)

Sensors

GMS &
Cellular Connection

Cloud Storage & 
Computation

Local Wi-Fi 
LAN

Base 
station Web portal

Soil Microbiome Monitoring

1. Bury the sensor under the soil
2. Rain & irrigation carries the microbes through the channel
3. Capture diffraction image of the microbes as they flow through

Deep Neural Network for image & volume reconstruction and estimate
microbe population distribution. Data collected can be synthesize to
monitor crop health and improve resiliency.

The monitoring system is designed for a network of optofluidic
sensors and continuous week-long, in-situ monitoring.

Microbes is critical in
• Global nutrients cycles
• Plant & animal life stability & resiliency
• Land-ocean-atmosphere carbon exchange

Next step is to reduce reconstruction computation resources and
improve speed. Another network will be used to evaluate microbiome
population and potentially infer health of crop.

Partially Coherent 
Laser Source

Microfluidic 
Channel

CCD Image Sensor

Diffraction pattern of 
microsphere 

Volumetric 
reconstruction

Mimic different soil texture

Schematic of DIHM. Coherent light illuminates an object and forms a highly magnified diffraction 
pattern captured by the image sensor. The 2D diffraction pattern captures 3D information.

References:
[1] M. Bentzon-Tilia, E. C. Sonnenschein, and L. Gram, “Monitoring and managing microbes in aquaculture - Towards a sustainable industry,” In
Microbial Biotechnologie, 2016.
[2] UN FAO. “The Global Status of Seaweed Production, Trade and Utilization”, Fisheries and Aquaculture Policy and Resources Division, 2018.
[3] Niknam, F., Qazvini, H. & Latifi, H. Holographic optical field recovery using a regularized untrained deep decoder network. Sci Rep 11, 10903
(2021). https://doi.org/10.1038/s41598-021-90312-5

Progress

Yet it is one of the biggest unknown in global climate change.
Understanding and predicting the impact of climate change on
microbiomes and the ecosystem services they provide present a grand
challenge and major opportunity.

We are developing a real time in-situ continuous microbiome
monitoring system using holographic microfluidic microscopy for
aquaculture & agriculture resiliency.

The novel opto-fluidics monitoring system will further contribute
to the modeling and understanding of microbes’ activity in the
environment and the health of our planet.

Marine Microbiome Monitoring

Submersible up to
~300m.

Achieved resolution of
down to 6um

Frame rate up to
24/sec. With 1 image
per 5 minutes, the
system can last up to3
days.

We partner with local agriculture farm and seaweed aquaculture farms
for deployment and testing.



Hard-to-Model Small-Scale DynamicsModeled Large-Scale Dynamics

Multiscale Neural Operator

Grid-independent Neural 
Operator

Multiscale Neural Operator: Combining 
Small and Large Scales via Scientific ML

Climate Impact Simulator
CP4All

Human CO2 Emissions

Carbon Tax

Fast pocket* climate models help 
policymakers explore climate decisions

• Possible: How will 10% reduction in global deforestation impact global
temperature? [1]

Accessible Education
No local impacts         Inaccuracies from global averages

• Not possible: How will local carbon tax impact local climate risks?

Research Question: 
Can we leverage SOTA ML to create emulators that can quickly generate 
useful, accurate local weather statistics for possible future climate 
scenarios?

CP4All: Climate 
Impact Simulator
Fast physics-informed neural 
networks for interactive climate 
impact assessments
Approach: 
• Display local impacts of custom policies
• Enable fast and trustworthy modeling via 

physics-informed machine learning
Pro:
• Accessible via relatable weather forecast
• Education via fast scenario exploration
• Local relevance via local statistics
• Trust via physical basis

1

Downscaling climate to weather predictions
Issue: 
• Dynamical downscaling models (WRF) of climate projections, e.g., CMIP, are 

computationally very expensive
Approach: 
• Create fast machine learning-based emulator with slightly reduced accuracy, 

but XXX-times computational speed [2]

• Ensure trust by pioneering novel combinations between neural operators and 
weather models

CP4All: Fast and Local Climate Projections 
with Scientific Machine Learning

Björn Lütjens (lutjens@mit.edu)1, Dava Newman2, Mark Veillette3, Chris Hill (cnh@mit.edu)4

1Human Systems Laboratory MIT, 2MIT Media Lab, 3MIT Lincoln Labs, 4MIT EAPS

How to generate high-resolution 
climate impact predictions:

Fig. 1.. The MIT en-roads model runs a globally-averaged climate model to help decision-exploration 
* O(secs)/simulation year on Intel i7 CPU

Impact Model [2]

Visualization [4]

Downscaling [3]

Large-scale 
Dynamics

Effect of fine- onto large-scale dynamics [5]

Fine-scale dynamics 

Climate 1880 Climate 2030

References
[1] Sterman et al., Climate interactive: the C-ROADS climate policy model, in Sys. Dyn. Rev., 2012 
[2] P. Jiang, N. Meinert, H. Jordão, C. Weisser, S. Holgate, A. Lavin, B. Lütjens, D. Newman, H. Wainwright, C. Walker, P. Barnard, 
Digital Twin Earth -- Coasts: Developing a fast and physics-informed surrogate model for coastal floods via neural operators, 
Neurips ML4PS , 2021
[3] R. Kurinchi-Vendhan, B. Lütjens, R. Gupta, L. Werner, and D. Newman, “WiSoSuper: Benchmarking Super-Resolution Methods 
on Wind and Solar Data”, NeurIPS CCAI, 2021.
[4] B. Lütjens*, B. Leshchinskiy*, C. Requena-Mesa*, F. Chishtie*, N. Diaz-Rodriguez*, O. Boulais*, A. Sankaranarayanan*, A. 
Lavin, A. Pina, Y. Gal, C. Raissi, D. Newman, *equal contribution, Physically-Consistent GANs for Coastal Flood Visualization, ICLR 
AIMOCC, 2021, 
[5] B. Lütjens, C. H. Crawford, C. Watson, C. Hill, D. Newman, Multiscale Neural Operator for Learning Fast and Grid-independent 
PDE Solvers, arxiv, 2022



The Impact of Uncertainty on Wind Energy Modeling
Storm A. Mata, Kerry S. Klemmer, and Michael F. Howland

Massachusetts Institute of Technology, Department of Civil and Environmental Engineering

Motivations Conclusions
• Uncertainty in the data source has a

significant effect on predictions of AEP
(4.4%) and farm efficiency (1.1%)

• Similar effects of wind shear on turbine
power production are observed between
two geographically and topographically
distinct locations, indicating this trend is not
site-specific

• Preliminary results with the blade element
model employed here illustrate the utility of
a physics-based model for turbine power
production

• Continued exploration of the effect of
uncertainty in wind conditions is shown
here to be useful for modeling single-
turbine power production, AEP, and wind
farm efficiency, which has implications for
future wind farm siting and design

B. Development of an Analytical Model for Turbine Power Production
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Fig. 2
Normalized turbine power
production with different
wind shear combinations.
Two distinct performance
regimes are evident:
1. low performance with
low speed shear and high
direction shear, (light blue
region), and 2. high
performance with high
speed shear and low
direction shear (dark blue
region). This trend is
qualitatively consistent with
a similar study conducted
by Sanchez Gomez and
Lundquist2 with data from
different turbines at a
different geographic
location.
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Fig. 5: An illustration of speed and direction shear
as used on the axes in Figs. 2, 6, and 7. Speed shear is
characterized by the exponent of the power law fit
to the wind speed profile as a function of height (left
plot and equation below). Direction shear is the
degree of turning (in degrees per meter) from the
bottom to the top of the rotor (right plot).

Fig. 7: The predicted normalized power
output from a blade element model when
given the same three inputs from real wind
speed and direction LiDAR measurements.
The model roughly replicates the empirical
trend shown in Fig. 2.

References
1 E. Gaertner et al., “Definition of the IEA 15-Megawatt Offshore Reference Wind
Turbine,” NREL, Golden, CO, Rep. TP-5000-75698, 2020.
2 M. Sanchez Gomez and J. K. Lundquist, “The effect of wind direction shear on
turbine performance in a wind farm in central Iowa,” Wind Energ. Sci., vol. 5, Jan.
2020.
3 A. R. Kirincich, January-December 2017 Lidar raw data. (2017). Distributed by WHOI.
4 C. Draxl et al., “The Wind Integration National Dataset (WIND) Toolkit,” Applied
Energy, vol. 151, Aug. 2015.
5 NREL, “FLORIS,”2022. [Online]. Available: https://github.com/NREL/floris
6 M. F. Howland et al., “Influence of atmospheric conditions on the power production
of utility-scale wind turbines in yaw misalignment,” J. Renew. Sustain. Energy, vol. 12,
Dec. 2020.

Fig. 1
Wind speed is shown
for an array of three
IEA 15MW1 turbines.
The top figure has a
turbulence intensity (TI)
of 6% and the bottom
figure has a TI of 20%.
With a higher value of
TI, the wake losses in
the bottom array of
turbines are reduced,
leading to higher AEP
and efficiency.

Research Goals:

• Quantify the effects of
uncertainty in wind conditions
on the prediction of wind farm
annual energy production
(AEP) and efficiency

• Study and model the effect of
wind shear on single turbine
power production, including
direction shear, an often-
neglected component

A. Characterizing Input Uncertainty in Vineyard Wind 1 Predictions
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Hypothesis:

It is possible to replicate the trends shown in Fig.
2 with a sufficiently detailed model that
incorporates information about wind shear
incident on a turbine rotor

Approach:

Build on a previous model6 using blade element
theory to resolve forces on the turbine blades
that contribute to power output

Determine how the model performs when given
idealized wind speed and direction profiles

Subsequently, use a unique LiDAR dataset of
wind conditions as inputs to the developed
model and compare power predictions to
Supervisory Control and Data Acquisition
(SCADA) data recorded during the same period
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Fig. 6: The predicted normalized power
output from a blade element model that
takes in idealized wind speed and direction
profiles as a function of height as shown in Fig.
5. Notably the empirical trend is absent when
idealized profiles are used, indicating a
limitation in their use for quantifying the effect
of shear on power production.

Ideal Inputs Real Inputs from LiDAR Data

Hypothesis:

Uncertainty in wind conditions, acquired from
different data sources, has a measurable effect
on the prediction of AEP and farm efficiency

Fig. 8: Predictions of
mean AEP (top) and mean
farm efficiency (bottom) for
the Vineyard Wind 1 farm
with the LiDAR data (MVCO
LiDAR) and the numerical
data (NWP VW1).
Differences between these
two data sources are
indicative of uncertainty.
Uncertainty in AEP decreases
with increasing height from
4.4% to 0.6% and uncertainty
in farm efficiency grows with
increasing height from 0.2%
to 1.1%.

Fig. 3: Annual cycle of turbulence intensity for 2017
for the two different data sources. Trends in seasonal
variability are replicated in the two datasets, but
trends with height are divergent. Data have been
smoothed using a 30-day rolling mean at each
height.

Fig. 4: Annual cycle of wind speed for 2017 for the
two different data sources. Trends in seasonal
variability are replicated in the two datasets, as are
trends with height. Data have been smoothed using
a 30-day rolling mean at each height.

Approach:

Use data from two different sources: 1. LiDAR
from the Air Sea Interaction Tower at the
Martha’s Vineyard Coastal Observatory run by
the Woods Hole Oceanographic Institute
(MVCO LiDAR)3, and 2. numerical weather
predication data from the Wind Integration
National Dataset Toolkit at the location of the
Vineyard Wind 1 farm (NWP VW1)4

Calculate Annual Energy Production (AEP) and
farm efficiency for VW1 with the two different
datasets over a range of years using FLORIS5, a
steady-state wake modeling tool

The Power Law: ! " = !!"# $
$!"#

%

Analysis of LiDAR and SCADA Field Data



Enabling Rapid Assessment 
of Marsh Ecosystem Services and Resilience 

using Drones and Modeling

Dr. Heidi Nepf, Donald and Martha Harleman Professor of Civil Engineering
Nepf Lab https://nepf.mit.edu/

Dr. Megan Tyrrell, Director, Waquit Bay National Estuarine Research Reserve

Samantha Chan, MIT Graduate student;  Trinity Stallins, MCSC UROP

Green Infrastructure:  Adaptation

During Hurricane Sandy coastal marsh reduced flood 
damages by 625 million dollar 
[Narayan et al. 2017]

Howard et al (2014), based on Pan et al. (2011), 
Fourqurean et al (2012), and Pendleton (2012) 

gCm-2y-1

Mg C ha-1

Green Infrastructure: Mitigation

Coastal Flood Mitigation
The flow resistance provided by coastal

marshes mitigates flooding by slowing

storm surge and damping waves. The flow

resistance (drag) provided by a marsh

varies with seasonal growth, marsh loss to

erosion, and marsh area gained by

restoration. A quick method to measure

marsh drag would enable more accurate

predictions of a marsh’s impact on coastal

flooding, improving coastal planning, and

risk assessment.

Ecosystem Services
Marshes provide additional ecosystem

services, such as carbon storage, habitat,

and water quality improvement. A quick

method to measure and monitor changes in

marsh structure and vegetation health

would facilitate assessment of marsh

economic value and resilience.

Marsh-Scale:  
(plants per area)  X (drag  per plant) =  (drag per area)

Force 
on one 

plant

Drone imaging
Biomass • Species • Height

Marsh Flow Resistance 
= ! (water depth, velocity)

Reconfiguration = bending and motion 
of plant in response to current and wave

Force on one plant

No current     Low current      High current

Spartina  alterniflora

only 
leaves 
bend

leaves 
+ stem 

bend

Rigid

Flexible

Plant-Scale: Drag is a function of plant rigidity and morphology
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Thermochemical H2O and CO2 Splitting for 
Renewable Syngas and Transportation Fuels
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MO → M+ 12'!

Heat

M+ (.*!' + +. ,'!
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Step 1. Metal Oxide Reduction Step 2. H2O and CO2 Splitting
M

MO
!" – Metal Oxide (e.g. CeO

2
, MgFe

2
O

4
, LaMnO

3
)

! – Reduced Metal Oxide (e.g. CeO
2-! – Oxygen vacancies)

T = 700-1000 ℃
p = 1 bar

T = 1400-1500℃
."! < 10 Pa

Thermochemical Redox Cycles: Heat-driven H2O/CO2 splitting

Reactor Train System: Novel System for efficient and continuous syngas production

Thermal Energy 

Storage 

(e.g. Firebrick)

Renewable electricity 
during low price periods

Power Cycle 

using Waste Heat

Heat

Electric 
Heating

Ø Heat-to-Fuel conversion efficiency = 37-42% (6X of existing state-of-the-art).
Ø Continuous fuel production despite wind/solar intermittency.

'! *! + ,'*!' + ,'! For auxiliary processes, 

including oxygen pumping

Electricity

Liquid Hydrocarbon Production at Competitive Cost

TES

• Peaker power plants

• Cement/Steel 

• Direct Air Capture

CO2

H2O • Seawater Desalination
Renewable 

electricity during 

low price periods

H2 + CO
Syngas-to-Liquid
• Fischer Tropsch

• Hydrocracking of wax

• Steam/dry reforming of C
1
-C

4

32% LHV 
efficiency

71% LHV 
efficiency with 

Heat Integration

Heat Integration

Jet Fuel (55%) + 
Naphtha (45%)

$3.35 $3.53 $4.07

$4.04 $4.22 $4.77

$5.44 $5.62 $6.16

CO
2

capture cost
Off-peak 

elec. cost

$5/MWh

$10/MWh

$20/MWh

$20/ton $40/ton $100/ton

Cost of Liquid Hydrocarbon [$/gal]
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• Fossil Jet fuel cost ~ $2.40/gal

• IRA Tax credit ~ $1.6/gal

Denholm 2015, “Overgeneration from Solar Energy 
in California: A Field Guide to the Duck Chart ”, NREL
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BRINGING COMPUTATION TO THE CLIMATE CHALLENGE

GOAL
To develop a novel platform that leapfrogs existing climate decision-support tools by leveraging artificial intelligence (AI) 

approaches to both improve the accuracy of Earth System Models (ESMs) used to make climate projections and to derive reduced 
models trained with full ESMs that are cheap to run and provide actionable information for stakeholders.  

OBJECTIVE 1 OBJECTIVE 2

OBJECTIVE 3 OBJECTIVE 4

Develop an ESM which makes accurate climate projections with quanti!ed uncertainties. 
This objective complements and expands the work done by the Climate Modeling Alli-
ance (CliMA) by developing additional components which are essential if the ESM is to be 
used to provide actionable information for stakeholders.  As part of this effort, we aim 
to: 

• Develop and test an ocean carbon cycle model
• Couple the atmosphere, ocean, and land components of the new ESM 
• Incorporate human system components
• Propagate the uncertainty from individual ESM components to the overall uncer-

tainty of the climate projections

Develop robust and "exible procedures to derive simple surrogate models trained with 
the full ESM to predict a subset of climate variables of interest for speci!c applications. 
This objective centers on the development of new emulator approaches.  Speci!cally, we 
aim to: 

• Improve emulator techniques based on model output
• Develop a novel emulator approach based on model code 
• Design the architecture to interface between emulators and users

Address stakeholder needs through pilot test cases. Stakeholder engagement is critical 
to the successful implementation of our project. In order to achieve this objective we will 
focus on a set of Pilot Test Cases that connect our work to the end users.  Prospective 
cases include: 

• Users of Climate Interactive’s En-ROADS model who are interested in gridded pro-
jections of climate impacts

• Member companies of the MIT Climate & Sustainability Consortium
• Users interested in localized predictions of heat, air quality, & extreme weather 

events (joint with our peer MIT Climate Grand Challenge projects)

Train a new generation of climate model developers and users who can help inform 
action by offering classes that introduce MIT students to the work done by the BC3 
team.  A !rst year class, “Julia - solving real world problems with computation”, will intro-
duce students to the real world problems of climate change and epidemics using some 
of the software tools being developed as part of BC3.

DOE Of!ce of Science

World Meteorological Organization
WMO-No. 1131

IPCC AR6 WG1

10.5194/esd-12-253-2021

MIT CLIMATE GRAND CHALLENGE

Noelle Eckley Selin (selin@mit.edu), Raffaele Ferrari (raffaele@mit.edu)
Themistoklis Sapsis, Youssef Marzouk, Elsa Olivetti, Tamara Broderick, Alan Edelman, 
Arlene Fiore, Glenn Flierl, Christopher Knittel, John Marshall, Bethany Patten, Chris Rackauckas, 
Daniela Rus, Adam Schlosser, Andre Souza, Gregory Wagner, Claire Walsh, Jennifer Morris,
Sebastian Eastham



Sensitivity analysis of modular heterocycles for CO2 capture 

Computational methods

Summary

Ylide binding mechanism and tunability

• Ylides are a promising class of potential capture molecules due to their 
ability to tune CO2 binding through both the reactive atom center and 
attached heterocycle

• Sensitivity analysis of the influence of peripheral structural changes can 
support design of a framework that displays optimal performance 
characteristics while balancing tradeoffs in other properties
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Enumeration of ylide candidates
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Develop structure-activity relationships to characterize stronger and weaker 
CO2 binders and design optimal binders through a modular approach

Interest in exploring additional classes of potential CO2 binders with high 
tunability in binding energy that do not experience H+ transfer 

Preliminary trends

• Database of 6+ million commercial molecules scraped from online 
chemical catalogs represented as SMILES

• SMARTS reaction templates used to substructure-match potential CO2
binders based on precursors of known synthetic routes

• Additional reaction templates used to enumerate all CO2 binding modes 
for each candidate molecule

• High-throughput DFT pipeline to generate conformers and calculate free 
energies at (U)B3LYP-D4/def2-SVP level of theory

n = 0
n = 1
n = 2

Free energies of CO2 binding 
for candidates produced from 9 
binding groups (40+ molecules 
per group) 

Core structure, ring size, and 
binding group can each have 
significant influence on range 
of achievable binding energies
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Carbon Sequestration through Sustainable 
Practices by Smallholder Farmers

A Data-driven, Community-centered Approach

How to design effective incentive systems based on carbon 
measurements to motivate large-scale sustainable practices?

Working as a group

Develop 
Models

Hypothesis & 
candidate 
schemes

Controlled 
experiments

Understand Objective

• Field visits, stakeholder interviews
• Data collection & analysis

• Simulation, Statistical analysis
• Optimization, game theory

• Experimental Design• Policy recommendations
• Update model

Design research questions with collaborators to ensure maximum impact

§ Nearly 20% of humanity’s yearly carbon footprint 
can be sequestered by farmers through sustainable 
agricultural practices.

§ Carbon rewards can be offered to farmers as 
incentives, financed by the global carbon markets

Motivation

Joann de Zegher , Y. Karen Zheng and Yuan Shi
jfz@mit.edu, yanchong@mit.edu, yuansh@mit.edu

Payment for outcomeData-driven resource 
allocation § Coping with external 

uncertainties and nonlinear 
biological processes

§ Evaluating the impact of 
payment delays due to 
outcome verification

§ Providing transparency and 
involving the local 
community in outcome 
monitoring

§ Different landscapes and 
agricultural activities differ in 
carbon sequestration 
potential and costs

§ Targeted planning based on 
geospatial, social-economic 
data and biological 
modeling to maximize 
desired environmental and 
social impact

§ Group efforts can lead to 
greater impact and easier 
monitoring

§ Success depends on 
behavioral/social 
preferences

§ Challenges include 
heterogenous opportunity 
costs, moral hazard and 
free-riding in teams

Additionality Permanence

Challenges and Design Questions

Leakage Verifiability




